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ABSTRACT
Wheezes are abnormal continuous adventitious lung
sounds that are strongly related to patients with ob-
structive airways diseases. Wireless telemonitoring of
these sounds facilitate early diagnosis (short, long term)
and management of chronic inflammatory disease of the
airways (e.g., asthma) through the use of an accurate
and energy efficient mhealth system. Therefore, low
complexity breath compression schemes with high com-
pression ratio are required. To this end, we propose a
compressed sensing based compression/reconstruction
solution that enables wheeze detection from a small
number of linearly encoded samples, by exploiting the
block sparsity of the breath eigenspectrum during recon-
struction at the receiver. Simulation studies, carried out
with publicly available breath sounds, show the energy
efficiency benefits of the proposed CS scheme, compared
to traditional CS recovery approaches.

Index Terms— Compressed Sensing, Wheezes,
Time-Frequency Analysis, PCA

1. INTRODUCTION

Wheezes are continious adventitious sounds, similar to
musical sounds, superimposed with the sound of normal
breathing. The presence of wheezes in a breath sound
is an insensitive sign for severity of obstructive airways
diseases [1], such as asthma and chronic obstructive pul-
monary disease (COPD). Several experts in the fields
of information and communication technologies (sens-
ing, signal processing, wireless communication, HW/SW
design) , respiratory medicine, inhaler devices focus on
building novel mhealth systems that facilitate the early
diagnosis and management of such diseases through a
personalised approach. Although medical devices that
detect these sounds, are already commercially available
[2], they operate on-demand in hand held form and can-
not be used for continious tracking the intensity of symp-
toms. To that end, the authors in [3] proposed a low-cost
wearable sensing system consisting of low power minia-
turized wearable sensor, recording breath signals, and

transmitting them to a body node coordinator (BNC)
e.g., a smartphone, that serves as a gateway and facili-
tates the continuous monitoring of asthmatic wheezes.

The concept of an mhealth sensing system that fa-
cilitates the continious monitoring of asthmatic wheezes
is shown in Fig.1. This systems requires new schemes
and algorithms to be implemented in order to opti-
mize the energy consumption and the total hardware
cost at the transmitter. Low energy consumption signifi-
cantly increases the battery lifetime of the breath sensor,
while the hardware cost reduction makes the mhealth
system economically viable and more easily accepted
by the individual customers. Both requirements moti-
vate the design of compression/reconstruction schemes,
with high compression ratio capabilities and reduced
computational requirements. The vast majority of audio
compression schemes available in the literature [4] charge
the transmitter with most of the processing, thus not
coping effectively with the above requirements.

Compressed Sensing (CS) approaches for signal com-
pression/reconstruction offers an affordable solution for
audio compression in wireless sensor networks [5], by
allowing the reconstructing of audio signals from a small
number of random linear observations. To the best of
our knowledge, this is the first work that demonstrates
the benefits of CS based compression/reconstruction
schemes for the efficient telemonitoring of breath sounds
in wireless body ares networks (WBANs). More specif-
ically, we enhance the benefits of the conventional CS
schemes proposed in [5], by taking into account specific
characteristics (e.g., block sparsity, sample correlation)
of the breath sounds in the eigen spectrum domain. The
proposed novel recovery algorithm, named PCA based
Group LASSO, increases the mhealth system energy
efficiency by a factor of 1.8 as compared to traditional
CS recovery approaches.

The rest of the paper is outlined as follows: Section
II, presents the system model. Section III describes the
proposed compression/reconstruction schemes. In Sec-
tion VI, the performance of the proposed scheme is eval-
uated and compared to state-of-the-art algorithms. Fi-
nally, Section VII concludes this paper.
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Fig. 1. mHelath system for wheeze telemonitoring.

2. BREATH TELEMONITORING MODEL

Figure 1 illustrates the telemonitoring system model un-
der study. In particular, we consider a WBAN formed by
an accoustic sensor (source node) that records a real time
breath sound and transmits it to a BNC (e.g., smart-
phone). We assume that the sensor can be attached to
the neck, to the tooth or even the inhaler of the patient.

The breath signal, is recorded by the microphne, dig-
itized and divided into segments of N samples. Each
segment is represented as a vector x = [x1, . . . , xN ]T ,
where xi ∈ R. We assume that the recorded signal to be
transmitted contains noise itself and, as a result, it may
be written as u = x+ ws, where u = [u1, . . . , uN ]T are
samples of the noisy signal and ws = [w1, . . . , wN ]T is
the random noise. For each segment, the source gener-
ates M random linear combinations (see Fig. 1) by using
a random matrix A of dimension M ×N (Random Linear
Coding - RLC) and performs quantization as follows:

yq = Q (Au) = Ax + wq, (1)

where Q : � → Yi is a scalar quantization function-
Typical quantizers are usually optimized by selecting de-
cision boundaries and output levels in order to minimize
the distortion (e.g., mean square error) between the in-
put real number and its quantized representation. that
discretizes its input, by performing a mapping of each
real element of y to a finite set of codewords Yi and wq

represents the combination of the sensing and quantiza-
tion error. The encoded samples are then quantized yq

transmitted to the BNC where the reconstruction of the
original signal and breath reconstruction and analysis is
taking place. At this point it should be mentioned that
the overhead introduced by the transmission of the ran-
dom encoding coefficients, can be significantly reduced
by: i) adopting the policy that was used in [6], that is,
instead of transmitting a full encoding matrix, the au-
thors propose the transmission of the coefficient in the
first row and then the generation of the M − 1 rows at

the destination by performing predefined shifts of the
received row, and ii) considering that the same encod-
ing coefficients remain fixed for a number of L segments,
where L >> N . 1

3. EFFICIENT RECONSTRUCTION OF
BREATH SOUNDS

Several sparse representation methods, such as the dis-
crete cosine/wavelet transfrom (DCT,DWT) [7], have
been used in the past for sparsifying audio signals. Their
sparse representation efficiency is based on the fact that
they tend to decor-relate (e.g., DCT, DWT) a given sig-
nal and redistribute the energy contained in the signal,
so that most of energy is contained in a small number of
components. In this case, x can be expressed as x = Ψs,
where Ψ ∈ R

N×N is an orthonormal basis matrix of an
appropriate transform domain, and s is a sparse repre-
sentation vector. The reconstruction of breath sound at
the BNC, can be performed by exploiting the sparsity of
the breath signal in some transform domain (e.g., DCT,
DWT) through the use of the classical CS theory.

3.1. Conventional CS approach

According to the classical CS approach, vector s may be
recovered from y by solving the problem:

mins

{‖s‖0 : ‖yq − AΨs‖2
2 ≤ ε

}
, (2)

where the parameter ε corresponds to the predefined
error tolerance and ‖ · ‖2 is the �2 - norm of the in-
put vector, respectively. The above optimization prob-
lem is computationally intractable and it cannot be used

1Experimental results have shown that the aforementioned
strategies do not affect the performance of the decoding algorithms
presented below in the BNC. Thus, it is reasonable to neglect the
communication overhead that is introduced by the transmission of
the encoding coefficients to the BNC and assume that matrix A is
considered to be known at the receiver.



for practical applications. CS suggests replacing the �0
quasi-norm by the convex �1-norm and solving the fol-
lowing problem: mins

{‖s‖1 : ‖yq − AΨs‖2
2 ≤ ε

}
, where

‖s‖1 =
∑N

i=1 |si|. Langrange relaxation allow us to effi-
ciently approximate the solution of the aforementioned
problem by solving the problem:

ŝL := arg min
s

‖yq − AΨs‖2
2 + λ‖s‖1, (3)

where λ is a penalty parameter that can be tuned, to
trade off the value of the ordinary least square error
‖y − AΨs‖2

2 for the number of the nonzero entries (de-
gree of sparsity) in s. Algorithmically, the aforemen-
tioned convex optimization problem in eq. (3), known as
LASSO problem, can be tackled by any generic second-
order cone program (SOCP) solver (e.g., interrior point
methods). The original signal in the time domain can be
reconstructed by computing x̂L = ΨŝL.

3.2. Exploitation of the Group Sparsity in a
transform domain

Many wheezing sounds are represented in the frecuency
domain, as a cluster of one main peak in parallel with
several lower amplitude peaks. Thus, vector s can be
viewed as a concatenation of R blocks of length d:

s = [ sT [1] , sT [2] , . . . , sT [R] ]T , (4)

where s [i] =
[
s(i−1)d+1, . . . , sid

]T denotes the ith block
and N = Rd. Note that only few clusters, including
those that correspond to wheezes, consist of large am-
plitudes and can be considered as non zero blocks. The
aforementioned structure is known as block sparse struc-
ture and enables the signal recovery from a reduced num-
ber of samples [8], compared to sparse structures. By
simply using the �1 relaxation for reconstructing s, we
ignore the fact that the signal is block-sparse, i.e., the
non-zero entries occur in consecutive positions. To ex-
ploit block sparsity, we reconstruct vector s by solving:

ŝGL := arg min
s

‖yq − AΨs‖2
2 + λ

R∑

i=1
‖s [i] ‖2, (5)

which is also known as group LASSO problem [9]. Then,
the breath signal in the native domain x can be recon-
structed as in the LASSO case, by computing x̂GL =
ΨŝGL

3.3. PCA based group LASSO

Orthogonal transforms such as discrete cosine transform,
and wavelet transform construct effective dictionaries for
sparse modeling of several kind of signals such as au-
dio, biosignals [5, 6]. Their ability to sparsify the sig-
nal, is based on the fact that they i) tend to decorrelate

the components of a given signal ii) tend to redistribute
the energy contained in the signal so that most of en-
ergy is contained in a small number of components [7].
The principal component analysis (PCA) transform, is
a linear transform that completely decorrelates the sig-
nal components and concentrates the signal energy to a
small number of coefficients. This is achieved by fitting a
low-dimensional subspace to the data in a way that min-
imizes the l2 approximation error [7]. More specifically,
the PCA transform is defined by the eigenvalues of the
covariance matrix. In mathematical terms, suppose that
R corresponds to the covariance matrix of the signal:

R = E
[
xxT

]
. (6)

By modeling breath sounds as an auto regressive - 1
process (AR-1) with parameter ρ [10] 2 the correlation
matrix R can be written as a Toeplitz symmetric matrix
with elements Ri,j = ρ|i−j|, ∀i, j ∈ [1, . . . , N ].

Now, let R = EΛET be the eigenvalue decomposi-
tion of matrix R. Matrix E is an orthogonal matrix with
the eigenvectors of R and Λ is a diagonal matrix with
the eigenvalues of R in decreasing order. The sparsity
and the block sparsity in the PCA domain can be ex-
ploited by solving the convex optimization problems in
eqs. (3) and (5) after setting Ψ = E. The breath signal
in the native domain x can be then reconstructed as in
the previous sections, by multiplying the resulted vectors
ŝL and ŝGL with E.

4. SIMULATION RESULTS

The focus of this study is to identify the benefits of
applying different compressed sensing schemes, in the
mhealth system energy efficiency. The proposed tele-
monitoring scheme are studied by using wheezing sounds
from a database of prerecorded respiratory sounds. The
database consisted of a total of 26 sounds that contained
more than one uninterrupted interval of wheezing. These
sounds were recorded using 11 kHZ sampling rate and
8-bit depth. Due to the lack of a single standard respi-
ratory sound database, the recordings used in our study
were drawn from multiple commonly referenced Internet
sources [11–14].

4.1. Simulation Setup

We assume that each breath signal, is divided into seg-
ments of N = 256 samples. Each segment is encoded at
the sensor side and the M encoded RLC measurements
are transmitted to a BNC. The BNC can reconstruct the

2Higher order models can be also included but without hav-
ing any significant impact on the performance of the PCA Group
LASSO scheme



original signal by performing either i) the conventional
LASSO in the DCT domain ii) the group LASSO in the
DCT domain iii) the conventional LASSO in the DWT
domain3, iv) the group LASSO in the DWT domain, v)
the proposed PCA LASSO vi) the proposed PCA group
LASSO. The convex problems were solved by using the
cyclic coordinate descent approach [9].

At this point it should be noted that many wheeze
detection schemes (e.g., [3,15]) are based on the time fre-
quency analysis of the breath sound signals. To be more
specific, they make use of the short time Fourier Trans-
form (STFT) and a set of rules related to the duration,
the temporal and spectral continuity of peaks in expected
frequency bands. To evaluate the diagnostic quality of
the compressed breath recordings and the accuracy of
the system, we make use of whether the wheezes can
be identified in the spectrogram of the breath signal.
An empirical study after using the aforementioned ap-
proaches for compression/reconstruction and wheeze de-
tection, showed that the wheezes can be identified in
the spectrogram of the reconstructed signal when the
NMSE between the spectrogram of the original and re-
constructed signals is less than −10 dB. In fig. 2 (a)
we provide the spectrogram of a reconstructed breath
sound that corresponds to a spectrogram NMSE of (a)
−5 (b) −10 and (c) −15 dB. By inspecting this figure it
is shown that the harmonic components originating from
wheezing, clearly appear as continuous frequency peaks
elevated against the noise of normal respiration in cases
(b) and (c), while in case (a) they are not identifiable.
The peaks of wheezing are localized along the frequency
axis and spread in the time axis.

The energy efficiency (EE) of the considered mhalth
system, after assuming that the transmit and receive
power is equal to 3.8 mW and 4.6 mW respectively, the
bit depth of the encoded measurements is lq = 8 bits,
while the duration of a packet transmission is 2.94 m
s [16] 4 can be evaluated by:

EE =
Segment Bits

Total Energy
=

8N

M(PT + PR)Ts/10
bits/Joule.

(7)

4.2. Performance Evaluation

In Fig.2 (b), the obtained spectogram NMSE, is plotted
against the energy efficiency values determined from the
M transmitted RLC data by the sensor. A block length
d = 16 was selected and the scaling rules for the pa-
rameter λ in the LASSO and group LASSO approaches

3Note that for the study we utilized the orthogonal Daubechies
wavelets (db 10).

4We have assumed packets with 14 bytes header and 80 bytes
payload (10 audio samples/packet), and a data rate equal to 256
kbps [17].
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Fig. 2. (a) Time frequency analysis of original and re-
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follow the results of [18]. By inspecting this figure, it is
clearly shown that the exploitation of group sparsity in
the PCA domain increases the energy efficiency as com-
pared to the DCT group LASSO and the conventional
DCT LASSO cases by 38.5%, and 98% respectively. This
is attributed to the fact that the PCA method results in
much more sparse representations, while the exploitation
of group sparsity reduces the degrees of freedom of the
compressible signal, by allowing group of samples to have
zero or non zero norm values. This property enable us
to reduce, the number of measurements M required for
a stable recovery of the breath signal at the BNC.

Finally, to evaluate the quantization effects in the re-
covery performance of the algorithms (i) - (iv), we con-
ducted experiments assuming that the bit depth of the
encoded measurements was lq = 4 bits. The quanti-
zation was performed by applying the Lloyd max algo-
rithm. Fig.2 (c) shows the obtained spectogram NMSE
against the energy efficiency values determined from the
M transmitted RLC data by the sensor. As compared to
the previous case the EE values are doubled due to the
reduced bit depth. The recovery in both the DCT and
PCA domain remains almost unaffected as compared to
the aforementioned case (lq = 8). As a result, the ex-
ploitation of group sparsity in both the DCT and PCA
domain is robust to quantization errors, increasing sig-
nificantly the mhealth system energy efficiency. The ro-
bustness to quantization effects can be further increased
by adopting the policies described in [19].

5. CONCLUSION

Wireless telemonitoring of breath sounds facilitate the
early diagnosis and management of chronic inflammatory
disease of the airways but introduces challenges related
to the real time compression and transmission of this au-
dio signals. To this end, we propose a novel Compressed
Sensing framework that offers significant gains in terms
of energy efficiency of the considered mhealth system, by
exploiting the benefits of the group LASSO approaches
in the eigen-spectrum domain. The presented schemes
are going to be implemented on smartphones with An-
droid operating system.
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