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Abstract—With the growing demand for easy and reliable
generation of 3D models representing real-world objects and
environments in mobile cloud computing platforms, new schemes
for acquisition, storage and transmission of 3D meshes are re-
quired. In general, 3D meshes consist of two distinct components:
vertex positions and vertex connectivity. Vertex position encoders
are much more resource demanding than connectivity encoders,
stressing the need for novel geometry compression schemes. The
design of an accurate and energy efficient geometry compression
system can be achieved by: i) reducing the amount of data
that should be transmitted ii) minimizing the computational
operations executed at the encoder. In this paper, we propose a
Bayesian learning approach that allows processing large meshes
in parts and reconstructing the Cartesian coordinates of each
part from a small number of random linear combinations.
The proposed compression/reconstruction approaches minimize
the samples that are required for transmission yet assuring
accurate reconstruction at the receiver, by exploiting specific
local characteristics of the surface geometry in the graph Fourier
domain. Simulation studies show that the proposed schemes, as
compared to the state of the art approaches, achieve competitive
Compression Ratios (CRs), offering at the same time significantly
lower compression computational complexity, which is essential
for mobile cloud computing platforms.

I. INTRODUCTION

Recently, there has been increasing interest from re-
searchers, system designers, and application developers on 3D
modeling of real-world objects and environments, in mobile
cloud computing (MCC) platforms [1], [2]. The evolution of
MCC platforms and the improved mobility and interactivity
of modern smart-phones and tablet computers, open up new
possibilities for live acquisition, transmission and processing
of 3D models to the cloud. The most common way of
representing 3D models in graphic applications, is the polygon
modeling that approximates surfaces using 3D meshes. In
general, 3D meshes consist of vertices which provide the
geometry information and polygons that connect the vertices
and determine the vertex connectivity. It is worth mentioning
that the encoded geometry is on average more that five
times larger that the encoded connectivity [3], since the raw
geometry data, whether originating from scanned real-world
objects or synthetic modeling applications, are represented
using floating point precision. As a result, although state-of-
the-art connectivity encoders are extremely effective [4], [5],
the compression of geometry information not only seems to
remain a challenge [3] but also, becomes more essential in
MCC settings [1] where the encoder (e.g., mobile device)

transmission and processing resources are much more limited
as compared to the decoder (e.g, cloud) processing resources.

A. Related Work and Contributions

The geometry compression efficiency of the algorithms
running on mobile devices can be optimized by proposing
encoding schemes, with high Compression Ratio (CR) capa-
bilities and reduced computational requirements. However, the
vast majority of the schemes available in the literature [6]–
[8] charge the transmitter with most of the processing, thus
not coping effectively with these requirements. To be more
specific the aforementioned works, propose the computation of
the eigenvectors of the Laplacian of the mesh at the transmitter,
exploiting the fact that 3D models can be well approximated
by a combination of low-frequency Laplacian eigenvectors,
also known as graph fourier basis vectors. The main drawback
of the aforementioned schemes, is the increased processing
demands at the transmitter, since they require the computation
of the Laplacian eigenvectors and the projection of the vertex
coordinates to a subspace, defined by these vectors.

To overcome this limitation, Compressed Sensing (CS) has
recently been proposed as a viable low complexity signal
processing solution for signal compression/reconstruction, pro-
viding a systematic approach for reconstructing sparse signals
from a small number of random linear observations [9],
[10]. More importantly, these schemes allow the progressive
compression of 3D oblects, where an early, coarse approxi-
mation can subsequently be improved by simply transmitting
additional random linear combinations. The authors in [11],
exploited the sparse structure of the Laplacian of a 3D mesh
in the eigen-domain, by employing conventional compressed
sensing (CS) schemes. However, as the number of vertices of
the 3D model grows, the proposed compression/reconstruction
methods becomes infeasible, since they require the inversion
of matrices, with sizes that are equal to the number of mesh
vertices. To overcome this limitation the object should be
divided and processed in submeshes.

In this paper, motivated by the aforementioned open issues,
we introduce a novel geometry compression/reconstruction
algorithm that enhances the benefits of the state of the art
schemes, by taking into account during reconstruction, spe-
cific local characteristics (e.g., potential correlations, block
sparsity) of the geometric information in the graph Fourier
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Fig. 1. Graph partitioning using MeTiS. Submeshes are colored with randomly selected colors. Triangles with vertices that belong to different submeshes are
colored white (a) Stanford Tyrannosaurus Model, 20002 vertices, 60000 edges, 30 submeshes (b) Stanford Armadillo Model, 20002 vertices, 60000 edges, 30
submeshes (c) A chair , 15340 vertices, 45990 edges, 30 submeshes (d) A lung 3d model re-constructed from CT scans, 25992 vertices and 79185 edges, 50
submeshes.

domain. The contribution of this paper can be summarized as
follows:

• We propose a novel 3D model encoding/decoding ar-
chitecture for MCC platforms, which decompose large
meshes using a fast graph partitioning method, and
compresses the geometric information of overlapped sub-
meshes by performing only additions at the encoder.

• We present a novel reconstruction scheme that exploits
the exponentially decaying structure of the euclidean
coordinates in the graph fourier domain through the
use of a modeled based Bayesian learning framework.
Simulation studies carried out with different 3D objects,
show that the proposed approaches, as compared to the
state of the art schemes, achieve competitive Compression
Ratios (CRs) offering at the same time significantly lower
compression computational complexity, which is essential
for MCC platforms.

The remainder of this paper is organized as follows. In
Section II, we briefly review concepts and terminology related
to the graph fourier based compression. In Section III, we
present the proposed encoding architecture. In Section IV,
we present the developed reconstruction algorithm. In Section
V, the performance of the proposed system is evaluated and
compared to state-of-the-art approaches, by taking into account
different 3D models. Finally, Section VI concludes this paper.

B. Notation

The entry in the i-th row and j-th column of a matrix A
is denoted by A(i, j), while the i-th row and j-th column is
denoted by A(i,:), A(:, j) respectively. (·)T denotes transposition;
E [·] denotes the expectation operator;

II. 3D MESH COMPRESSION USING GRAPH FOURIER
TRANSFORM

In this work we focus on triangle meshes, since they are
the most common polygon models. Let us assume that each
triangle mesh M with n vertices can be represented by two
different sets M = (V,F) corresponding to the vertices (V )
and the indexed faces (F) of the mesh. A set of edges (E)
can be directly derived from V and F . Most mesh geometry

compression works, e.g., [6], [7], [12] are based on the fact
that smooth geometries should yield spectra, dominated by low
frequency components and suggest projecting the Cartesian
coordinates x,y,z ∈ ℜn×1 in the graph Fourier basis spanned
by the eigenvectors ui of the Laplacian operator L. This matrix
is calculated as follows:

L = In − D−1C, (1)

where In is the identity matrix, and C ∈ ℜn×n is the connec-
tivity matrix of the mesh with elements:

C(i, j) =

{
1 (i, j) ∈ E
0 otherwise, , (2)

D is the diagonal matrix with Di,i = |N(i)| and N(i) =
{ j | (i, j) ∈ E} is a set with the immediate neighbors for node
i. Let as assume that the eigenvalue decomposition of L is
written as:

L = UΣUT (3)

where Σ is a diagonal matrix consisting of the eigenvalues
of Λ and U = [u1, . . . ,un] is the matrix with the eigenvectors
ui ∈ ℜn×1 that span the graph fourier basis. Then the afore-
mentioned compression schemes take advantage of the fact
that the projection of Euclidean coordinates (e.g., x) to the
eigenvectors U of the Laplacian operator L results in sparse
representations sx = UT x that allows the following compact
representation:

x̂ ≈
k

∑
i=1

(
uT

i x
)

ui, k ≤ n. (4)

III. PROPOSED ARCHITECTURE

In this section, we describe the operations performed for
compressing the raw geometry data, while we assume that the
connectivity information is available at the decoder. Our goal is
to propose compression/reconstruction schemes that minimize
the processing at the transmitter side without reducing the
reconstruction quality at the destination. To than end, we
propose a solution based on the CS framework that allows re-
construction from a small number of linearly combined points,
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Fig. 2. Encoder and Decoder Architecture running on a mobile device and
the cloud respectively.

by exploiting the the sparsity of the mesh point coordinates in
the GFT domain. The evaluation of the corresponding trans-
formation matrix, requires the estimation of the eigenvectors
of a matrix with a size equal to the number of vertices in the
mesh. The computational inefficiency of this operation, (e.g.,
when the number of vertices is more than 1,000) motivated the
partitioning of the mesh into submeshes, that are individually
processed (e.g., compressed at the encoder and recosntructed
at the decoder) [7]. Figure 2 illustrates a block diagram of the
system under study, while the compression and reconstruction
operations are described in the following subsections.

A. Partitioning and processing of submeshes at the encoder

In the encoder side, the original 3D mesh is divided into
L submeshes by using the METIS method described in [13].
Each submesh l consist of nl nodes, where ∑L

i=1 ni = n. The
Cartesian coordinates of the nl nodes included in the l-th
submesh are represented as a matrix of size nl × 3, vl =
[xl ,yl ,zl ], where xl ,yl ,zl ∈ ℜnl×1. Fig 1 illustrates partitions
generated by MeTiS for the Armadillo, Tyrannosaurus and a
Chair model.

The trade-off included in not treating the whole mesh as
one, is the possible degradation in the reconstruction quality
along the submesh boundaries, so called as ”edge effects”.
This degradation is attributed to the fact that we ignore the
neighbors of the boundary nodes that are not included in
the submesh that we process. To overcome this problem, we
suggest to process overlapped submeshes, by extending each
submesh with the neighbors of the boundary nodes of adjacent
submeshes. To be more specific, if Il = [I1, . . . , Inl ] denotes the
set of indices of the 3D mesh nodes belonging in submesh l
and Ilb =

{
il1 , . . . , ilb

}
⊂ Il is the set of indices of the boundary

nodes of submesh l, then we suggest extending matrix vl with
the Cartessian coordinates of the neighbors of the boundary
nodes that belong to the set ∪b

j=1N(il j) \ Il . The extended
vector will be denoted by vle and will consist of nle > nl
vertices.

For each submesh, the source generates M × 3 random
linear combinations (see Fig. 2) by using a random matrix
A of dimension M × nle

1, that consist of ±1 values selected
with probability 0.5 (i.e, Rademacher distribution) 2 (Random
Linear Coding - RLC) and performs quantization as follows:

yq = Q(Avle) = Avle +wq, (5)
= Aul sle +wq (6)

where Aul = AUle , Ule are the eigenvalues of the Laplacian
operator Lle of the extended submesh l, sle ∈ ℜnle ×3 are the
projected Cartesian coordinated in the corresponding graph
fourier basis and Q : ℜ → Yi is a scalar quantization function3

that discretizes its input, by performing a mapping of each real
element of y to a finite set of codewords Yi and wq represents
the quantization error. The encoded samples are then trans-
mitted to the receiver where the reconstruction of the original
3D object is taking place. At this point it should be mentioned
that the overhead introduced by the transmission of the random
encoding coefficients, can be significantly reduced by adopting
the following policy: instead of transmitting a full encoding
matrix, we transmit the first row and then the generation of the
M−1 rows at the decoder side, by performing predefined shifts
of the received row. In addition, we used the same encoding
coefficients for compressing all the object submeshes. In
the case that a submesh consist of more vertices than the
previous one the extra encoding coefficients are generated
by cyclicly shifting the already available ones. Experimental
results have shown that the aforementioned strategies do not
affect the performance of the decoding algorithms presented in
Section . Thus, it is reasonable to neglect the communication
overhead that is introduced by the transmission of the encoding
coefficients and assume that matrix A is considered to be
known at the decoder.

B. Reconstruction via Modeled based Bayesian Learning

Motivated by the fact that: i) the behavior of the GFT is very
similar to the DCT since it redistributes the energy contained
in the data, so that most of energy is contained in a small
number of components and ii) the DCT coefficient values of
natural images and audio signal are usually modeled as mul-
tivariate gaussian distributions, we assume that the projection
of the Cartesian coordinates of each extended submesh l, in
the GFT domain (e.g., sle = UT

levle ) can be well approximated
by a sparse vector with k non zero components and nle − k
zeros:

sx
le =

[
sx

lk ,0nle −k

]T
, sx

lk =
[
sx

l1 , . . . ,s
x
lk

]
,k < nle (7)

where sx
lk denotes the non zero block of size k that can be

modeled as a parametrized multivariate Gaussian distribution:

1The value of M determines the achieved compression ratio as it will be
shown in Section IV.

2Note that each column of vle is treated individually
3Typical quantizers are usually optimized by selecting decision boundaries

and output levels in order to minimize the distortion (e.g., mean square error)
between the input real number and its quantized representation.



p
(
sx

lk

)
∼ N (0,C0) , C0 = γ0Σx, (8)

where γ0 is a scalar parameter and Σx ∈ ℜk×k is a positive
definite matrix. By using the Bayes rule and assuming that
the noise vector in wq in (6) consist of Gaussian i.i.d. random
variables wq ∼ N (0,σwIM) we obtain the posterior density of
sx

lk , which is also Gaussian p
(

sx
lk | yqx ;σw,γ0Σx

)
∼ N

(
µsx

l
,Cx

)
with the following mean and covariance matrix:

µsx
l

= C0AT
ulk

(
Aulk

C0AT
ulk

+σwIM

)−1
yx

q (9)

Cx = C0 − C0AT
ulk

(
Aulk

C0AT
ulk

+σwIM

)−1
Aulk

C0(10)

where Aulk
= Aul (:,1:k)

is an M ×k matrix that consists of the
first k columns of Aul . Thus, given the parameters σw,γ0,Σx
the maximum a posteriori (MAP) estimate of the Cartesian
coordinates of the extended submesh l is given by

v̂le = Ule

[
µsx

l
µsy

l
µsz

l

0nle −k 0nle −k 0nle −k

]
(11)

To find the parameters σw,γ0,Σi we employ the expectation
maximization (EM) algorithm to maximize p

(
yi

q;σw,γ0,Σi
)

per coordinate, meaning that i can be x,y or z:

σw =

∥∥yq − Aul sle
∥∥2

2 +σw

[
k − Tr

(
CxC−1

0

)]
M

(12)

γ0 =

Tr
(

Σ−1
i

(
Cx +µsi

l

(
µsi

l

)T
))

k
(13)

Σi =
Cx +µsi

l

(
µsi

l

)T

γ0
(14)

The performance of the algorithm can be further improved
by constraining the matrix Σi to have a Toeplitz symmetric
structure with elements Σi(m,l) = r|m−l|, ∀m, l ∈ [1, . . . ,k]. This
form is equivalent to modeling the elements in the non zero
block as a first order auto-regressive process. The value of r
can be estimated by

r = sign(m1/m0)min{|m1/m0| ,0.99} (15)

where m0 is the average of the elements along the main
diagonal and m1 is the average of elements along the main
sub-diagonal of Σi, 0.99 is a bound selected by the user. The
proposed algorithm is summarized in Table I.

IV. SIMULATION RESULTS

The focus of this study is: i) to evaluate the benefits of
processing overlapped submeshes as compared to the non
overlapping case ii) to identify the benefits of the proposed
compression/reconstruction schemes as compared to the tra-
ditional compression approaches. The proposed schemes are
studied by using different 3D Objects.

TABLE I
MESH RECONSTRUCTION VIA MODELED BASED BAYESIAN LEARNING

(MBL)

MBL Recovery:
Inputs: Encoding Matrices and GFT vectors : A, Ule
Encoded Samples: yq, Non zero Block length k,
Output: Estimated Cartesian Coordinates x,y,z ∈ ℜn×1

For each Submesh l = 1, . . . ,L,
For each iteration m = 1, . . . ,K

a. Evaluate non zero values µsx
l
,µsy

l
,µsz

l
from (9)

b. Evaluate the corresponding variances Cx,Cy ,Cz via (10)

c. Update σw,γ0,Σi for every coordinate i=x,y,z from (12)-(14)

d. Update the value of r from (15) and re-evaluate
Σi = Toeplitz

{[
1 r . . . rk−1

]}
.

end For

Evaluate Cartesian Coordinates v̂le of the l submesh from (11)
and drop the points that belong to the set ∪b

j=1N(il j )\ Il
where il j denotes the indices of the boundary nodes in submesh l.

end For

A. Experimental Setup & Metrics

We assume that each object, is divided into N submeshes.
Then, each submesh is compressed either by using the Con-
ventional or the CS schemes. As conventional schemes we
consider: i) the approaches that provide compact representa-
tion of 3D meshes in the GFT basis (GFT) (e.g., [7]), presented
in Sec. II, ii) the approach of Sorkine and Cohen-Or [6] known
as least squre meshes (LSM), that make use of specific points
in the mesh so called as anchor points. The CS schemes
include: i) a method similar to the one presented in [11]
that reconstructs each submesh from RLCs, by exploiting the
sparsity of each submesh in the GFT domain (CS GFT) ii) the
proposed method presented in Table I. At this point it should
be mentioned that the number of the selected anchor points in
the LSM case, was equal to the number of selected random
linear combinations in the CS approaches. To allow a more
accurate reconstruction the anchors were selected randomly
from the set of the boundary nodes of each submesh.

The aforementioned methods are evaluated in terms of
both compression efficiency and reconstruction accuracy. The
compression efficiency of the proposed schemes is evaluated
by using the Compression ratio (CR) :

CR = 1 − ∑L
i=1 Mi × q
n × 32

(16)

where Mi is the low frequency components (GFT Case), the
generated encoded samples for submesh i (CS GFT and MBL
case), or the number of Anchor points (LSM case), q is the
number of bits used for the representation of the encoded sam-
ples. The quantization is performed by applying the Lloyd max
algorithm [14]. The reconstruction effectiveness is evaluated
by the normalized mean square visual error (NMSV E) defined
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Fig. 3. Reconstruction of the Mesh Geometry using (a) non overlapped (NMSVE: -27 dB) and (b) overlapped submeshes (NMVSE: -34 dB). The achieved
CR in both cases is 0.92.

in [7], as the average error in the Cartesian and Laplacian
domains:

NMSV E =
1

2n

n

∑
i=1

(
∥vi − ṽi∥l2

+∥GL(vi)− GL(ṽi)∥l2

)
GL(vi) = vi −

∑ j∈N(i) d−1
i j v j

∑ j∈N(i) d−1
i j

(17)

where di j denotes the Euclidean distance between i and j.

B. Performance Evaluation

To evaluate the benefits of processing overlapping sub-
meshes, as compared to the non overlapping case presented in
[7], we executed the GFT method for the same number of low
frequency components per submesh. In fig. 3 we provide the
reconstructed Tyranosaurus models, where it is clearly shown
that the overlapping method described in section II results in a
more accurate reconstruction, that is attributed to the fact that
the boundary points (vertices of red triangles) are recovered
almost perfectly. Based on this observation we adopt the idea
of processing overlapping submeshes.

In Fig.4 (a), the obtained NMSVE for a chair model scanned
by using a Kinect sensor, is plotted against the achieved CR
after transmitting the Mi = M = [65,130,195,250,280] lower
frequency components per sub-mesh, in the GFT case, M
random linear combinations in the CS cases, or M anchor
points in the LSM case. The number of bits for representing
the transmitted samples were selected equal to q = 12. By
inspecting the figure, it is clear that the application of the
MBL algorithm at the decoder reduces the number of the
transmitted samples M required for the efficient reconstruction
of the 3D mesh, with respect to the CS GFT and LSM
approaches, while achieves performance almost similar to the
classical one (GFT). Moreover, it should be noted that the
application of RLC at the CS encoder requires only additions,
instead of computing the projection of the coordinates to the
Laplacian eigenvectors and selecting the M largest spectral
coefficients. In other words, the CS approach requires only
O
(
n2
)

additions and 0 multiplications for compressing the
3D object, while the GFT requires O

(
n3
)

multiplications
and O

(
n3
)

additions. More importantly, the proposed method

inherently involves a randomization process offering privacy
preservation without any additional cost [15].

Fig. 4 (b), shows the NMSVE against the number of
executed iterations for the Armadillo Model, where it is clearly
shown that the MBL algorithm converges after two iterations.
Finally, in fig. 3 we provide the original and reconstructed 3D
objects, using the proposed approach with K = 2. The achieved
CR is equal to 95%. By inspecting the reconstructed objects,
it can be easily verified that the proposed scheme achieve high
CR, offering at the same time significantly low compression
computational complexity.

V. CONCLUSIONS

In this paper, we presented a novel Bayesian learning based
3D mesh geometry reconstruction algorithm that minimizes
the random linear coded samples that are required for trans-
mission so that an accurate reconstruction can be obtained
at the receiver, by exploiting key characteristics Euclidean
coordinates in the GFT domain. The advantages of the pro-
posed schemes as compared to the conventional approaches
is that they achieve competitive CRs, while minimizing the
compression complexity. This property is considered critical
for emerging 3D model acquisition schemes on off-the-shelf
mobile devices.
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